Geological History of Asteroid 4 Vesta: The “Smallest Terrestrial Planet”

نویسنده

  • Klaus Keil
چکیده

The asteroid 4 Vesta is the only known differentiated asteroid with an intact internal structure, probably consisting of a metal core, an ultramafic mantle, and a basaltic crust. Considerable evidence suggests that the HED meteorites are impact ejecta from Vesta, and detailed studies of these meteorites in terrestrial laboratories, combined with ever more sophisticated remote sensing studies of the asteroid, have resulted in a good understanding of the geological evolution of this fascinating object. Extensive mineralogical, petrological, geochemical, isotopic, and chronological data suggest that heating, melting, and formation of a metal core, a mantle, and a basaltic crust took place in the first few million years of solar system history. It is likely that many more Vesta-like asteroids formed at the dawn of the solar system but were destroyed by impact, with the iron meteorites being remnants of their cores. Such differentiated objects may have played an important role in the accretion and formation of the terrestrial planets, and it is therefore highly desirable to explore by spacecraft this world that can be viewed as the smallest of the terrestrial planets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact histories of angrites, eucrites, and their parent bodies

Eucrites, which are probably from 4 Vesta, and angrites are the two largest groups of basaltic meteorites from the asteroid belt. The parent body of the angrites is not known but it may have been comparable in size to Vesta as it retained basalts and had a core dynamo. Both bodies were melted early by Al and formed basalts a few Myr after they accreted. Despite these similarities, the impact hi...

متن کامل

Origin , Internal Structure and Evolution of 4 Vesta

Asteroid 4 Vesta is the only preserved intact example of a large, differentiated protoplanet like those believed to be the building blocks of terrestrial planet accretion. Vesta accreted rapidly from the solar nebula in the inner asteroid belt and likely melted due to heat released due to the decay of 26Al. Analyses of meteorites from the howardite-eucritediogenite (HED) suite, which have been ...

متن کامل

The Formation of Jupiter, the Jovian Early Bombardment and the Delivery of Water to the Asteroid Belt: The Case of (4) Vesta

The asteroid (4) Vesta, parent body of the Howardite-Eucrite-Diogenite meteorites, is one of the first bodies that formed, mostly from volatile-depleted material, in the Solar System. The Dawn mission recently provided evidence that hydrated material was delivered to Vesta, possibly in a continuous way, over the last 4 Ga, while the study of the eucritic meteorites revealed a few samples that c...

متن کامل

The Complicated Geologic History of Asteroid 4 Vesta

Planetary scientists are pretty sure that almost all of the HED meteorites come from the fourth-largest asteroid, 4 Vesta. HED stands for the three types of rocks that make up the group. As cosmochemists have studied the meteorites over the years, their view of the geologic history of the asteroid has become progressively more complicated. Jean-Alix Barrat and Marcel Bohn (CNRS and University o...

متن کامل

Dawn: A journey in space and time

By successively orbiting both 4 Vesta and I Ceres the Dawn mission directly addresses the long-standing goals of understanding the origin and evolution of the solar system. Ceres and Vesta are two complementary terrestrial protoplanets (one apparently “wet” and the other ”dry”), whose accretion was probably terminated by the formation of Jupiter. They provide a bridge in our understanding betwe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002